2,488 research outputs found

    A History of Until

    Get PDF
    Until is a notoriously difficult temporal operator as it is both existential and universal at the same time: A until B holds at the current time instant w iff either B holds at w or there exists a time instant w' in the future at which B holds and such that A holds in all the time instants between the current one and w'. This "ambivalent" nature poses a significant challenge when attempting to give deduction rules for until. In this paper, in contrast, we make explicit this duality of until to provide well-behaved natural deduction rules for linear-time logics by introducing a new temporal operator that allows us to formalize the "history" of until, i.e., the "internal" universal quantification over the time instants between the current one and w'. This approach provides the basis for formalizing deduction systems for temporal logics endowed with the until operator. For concreteness, we give here a labeled natural deduction system for a linear-time logic endowed with the new operator and show that, via a proper translation, such a system is also sound and complete with respect to the linear temporal logic LTL with until.Comment: 24 pages, full version of paper at Methods for Modalities 2009 (M4M-6

    An interpolation-based method for the verification of security protocols

    Get PDF
    Interpolation has been successfully applied in formal methods for model checking and test-case generation for sequential programs. Security protocols, however, exhibit such idiosyncrasies that make them unsuitable to the direct application of interpolation. We address this problem and present an interpolation-based method for security protocol verification. Our method starts from a protocol specification and combines Craig interpolation, symbolic execution and the standard Dolev-Yao intruder model to search for possible attacks on the protocol. Interpolants are generated as a response to search failure in order to prune possible useless traces and speed up the exploration. We illustrate our method by means of concrete examples and discuss the results obtained by using a prototype implementation

    A Branching Distributed Temporal Logic for Reasoning about Quantum State Transformations

    Get PDF
    The Distributed Temporal Logic DTL allows one to reason about temporal properties of a distributed system from the local point of view of the system's agents, which are assumed to execute independently and to interact by means of event sharing. In this paper, we introduce the Quantum Branching Distributed Temporal Logic QBDTL, a variant of DTL able to represent quantum state transformations in an abstract, qualitative way. In QBDTL, each agent represents a distinct quantum bit (the unit of quantum information theory), which evolves by means of quantum transformations and possibly interacts with other agents, and n-ary quantum operators act as communication/synchronization points between agents. We endow QBDTL with a DTL-style semantics, which fits the intrinsically distributed nature of quantum computing, we formalize a labeled deduction system for QBDTL, and we prove the soundness and completeness of this deduction system with respect to the given semantics. We give a number of examples and, finally, we discuss possible extensions of our logic in order to reason about entangle-ment phenomena

    A new metrological characterization strategy for 3D multi-camera systems

    Get PDF
    AbstractThe objective of this study is to establish a new methodology for the metrological characterization of interactive multi-camera systems. In the case of 3D system highly adapted to specific needs the accuracy evaluation cannot be performed using standard state-of-the-art techniques. To this end, the metrological characterization techniques used in the literature were investigated in order to define a new methodology that can be adjusted to each device by making the appropriate modifications. The proposed strategy is adopted for the metrological characterization of a new interactive multi-camera system for the acquisition of the arm

    Nucleolus vs nucleus count for identifying spiral ganglion in human temporal bone

    Get PDF
    OBJECTIVES: Spiral ganglion (SG) counting is used in experimental studies conducted on age-, noise-, and drug-induced sensorineural hearing loss, as well as in the assessment of cochlear implant performances. Different methods of counting have been reported, but no definite standardization of such procedure has been published. The aim of our study is to identify the best method to count human spiral ganglions (SGs). MATERIAL and METHODS: By identification of nuclei or nucleoli as described by Schucknect, seven researchers with different experience levels counted SGs in 123 human temporal bones (TBs). Data on time of post-mortem bone removal post-mortem, methods of specimen’s fixation, decalcification, and coloration were collected to test their possible influence on human tissue. Percentage, two-tailed t-test, Spearman’s test, and one-way ANOVA were used to analyze the data. RESULTS: Nucleoli were identified in 61% of cases, whereas nuclei were recognized in 100% of cases (p<0.005). Nucleoli presence in all four segments in the same temporal bone (TB) was observed in 69 cases (92%), whereas nuclei were identified in all four segments in 103 cases (83.7%) (p<0.001). The junior investigators requested a double check by the seniors in 25 (20.3%) cases for identifying and counting nucleoli, whereas the senior researchers showed no doubts in their identification and count. The only parameter positively affecting nucleoli identification in tissue preparation was bone removal for <12 h with respect to longer post-mortem time (p<0.001). CONCLUSION: We suggest counting nuclei, rather than nucleoli, for spiral ganglion computation because of easier recognition of nuclei, especially in case of investigator’s limited experience
    • …
    corecore